ENERGY ENGINEERING • SUSTAINABLE ENERGY ENGINEERING
BSC GUEST PROGRAMME IN ENERGY ENGINEERING • 2 YEAR MSc IN ENERGY ENGINEERING PROGRAMMES
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>WELCOME</td>
<td>3</td>
</tr>
<tr>
<td>BACHELOR’S PROGRAMME FOR INTERNATIONAL GUEST STUDENTS</td>
<td>4</td>
</tr>
<tr>
<td>MASTER’S PROGRAMMES</td>
<td>4</td>
</tr>
<tr>
<td>CAMPUS AALBORG</td>
<td></td>
</tr>
<tr>
<td>ELECTRICAL POWER SYSTEMS AND HIGH VOLTAGE ENGINEERING</td>
<td>5</td>
</tr>
<tr>
<td>FUEL CELLS AND HYDROGEN TECHNOLOGY</td>
<td>6</td>
</tr>
<tr>
<td>MECHATRONIC CONTROL ENGINEERING</td>
<td>7</td>
</tr>
<tr>
<td>POWER ELECTRONICS AND DRIVES</td>
<td>8</td>
</tr>
<tr>
<td>THERMAL ENERGY AND PROCESS ENGINEERING</td>
<td>9</td>
</tr>
<tr>
<td>WIND POWER SYSTEMS</td>
<td>10</td>
</tr>
<tr>
<td>CAMPUS ESBJERG</td>
<td></td>
</tr>
<tr>
<td>PROCESS ENGINEERING</td>
<td>11</td>
</tr>
<tr>
<td>AND COMBUSTION TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>OFFSHORE ENERGY SYSTEMS</td>
<td>12</td>
</tr>
<tr>
<td>CAREER OPPORTUNITIES</td>
<td>13</td>
</tr>
<tr>
<td>MEET GRADUATES IN ENERGY ENGINEERING</td>
<td>14</td>
</tr>
<tr>
<td>PROBLEM-BASED LEARNING (PBL-MODEL)</td>
<td>15</td>
</tr>
<tr>
<td>STUDY IN AALBORG</td>
<td>16</td>
</tr>
<tr>
<td>STUDY IN ESBJERG</td>
<td>17</td>
</tr>
<tr>
<td>PRACTICAL INFORMATION</td>
<td>18</td>
</tr>
</tbody>
</table>
WELCOME

Imagine a world without oil, coal, and gas. This would result in a lack of electricity and heat. We would not be able to drive our cars or take a bus – and flying would be out of the question as we would not have any fuel. We would not be able to turn on the TV, cook dinner, charge our cell phones, or turn on the lights and the heat. What would we do?

We do not know how long our oil and coal reserves will last. At the same time, we are polluting the earth with the use of oil and coal. We need to replace the sources of energy such as oil, coal, and gas with alternatives like wind, sun, and wave energy. These sources of energy do not pollute the earth, and they will not run out.

By studying Energy Engineering at Aalborg University, you can become part of the future team of engineers who are going to ensure our environment and our climate through the use of alternative sources of energy which do not pollute and at the same time optimise the energy system and efficient apparatus so that we save energy.

The Energy Engineering programmes are offered internationally and therefore taught in English.
BACHELOR’S PROGRAMME
FOR INTERNATIONAL GUEST STUDENTS

At our Bachelor’s programmes in Energy Engineering, international students may enroll as guest students on the 5th semester and/or 6th semester(s).

The bachelor’s programme in Energy Engineering provides you with a broad theoretical basis and solid practical tools. You will work in-depth in different areas such as new energy production systems, energy usage, and efficiency enhancement. Overall, you will work with modelling and analysis of energy systems and control of energy conversion systems.

IN AALBORG you may choose a specialisation in one of the following three areas:
- Electrical energy engineering
- Thermal energy engineering or
- Mechatronic control engineering

IN ESBJERG you may choose a specialisation in one of the following two areas:
- Thermal process engineering
- Dynamic system engineering

Please visit en.aau.dk/education for more information.

MASTER’S PROGRAMMES

Aalborg University offers a variety of specialisations in the field of Energy Engineering. With a bachelor’s degree in Energy, you can enroll in a Master’s programme in Energy Engineering in Aalborg or in a Master’s programme in Sustainable Energy Engineering in Esbjerg.

All programmes are characterised by a high degree of interaction with industrial partners and energy supply companies. The companies take an active part in providing project proposals for the problem-oriented project work, guest lectures and visits to the companies.

In the following pages, you can read about our two-year Master’s specialisations. You may choose to study here during the entire programme which gives you 120 ECTS, or you may study as a guest student for one or two semesters. Depending on the programme you choose, you may study either in Esbjerg or Aalborg.

You can read about the many opportunities in the following pages.

MASTER’S SPECIALISATIONS AND CAMPUSSES

<table>
<thead>
<tr>
<th>CAMPUS AALBORG</th>
<th>CAMPUS ESBJERG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Power Systems and High Voltage Engineering</td>
<td>Process Engineering and Combustion Technology</td>
</tr>
<tr>
<td>Fuel Cells and Hydrogen Technology</td>
<td>Wind Power Systems</td>
</tr>
<tr>
<td>Mechatronic Control Engineering</td>
<td>Offshore Energy Systems</td>
</tr>
<tr>
<td>Power Electronics and Drives</td>
<td>Thermal Energy and Process Engineering</td>
</tr>
<tr>
<td>Wind Power Systems</td>
<td>Process Engineering and Combustion Technology</td>
</tr>
</tbody>
</table>
In the future, it is expected that electrical energy production and the associated network grid structure will change. It is expected that an increased amount of dispersed renewable generation units, such as photovoltaic (PV) systems, biomass systems, and small wind turbines will be connected to the network grid at the distribution level. At the same time, large offshore wind farms at the transmission level will be connected. This may offer potential economic, environmental, and technical benefits, but it also presents a great number of challenges and uncertainties.

The introduction of dispersed generation and wind farms will affect the network technically in a number of ways such as the load flow pattern, power quality problems, voltage control, frequency control, and reactive power control. Therefore, attention should be paid to the availability, security, and control of the system. Furthermore, dispersed generation units and wind farms could alter the fault level and the fault current in the distribution and transmission systems. This may require adjustments or replacements of the protection system.

If you want to work with future power supply and the structure of future electrical systems, you should consider choosing this MSc specialisation where you will have the opportunity to solve problems like:

• Should the entire high voltage network be laid in cables? How should this be done?
• What would the smart grid network structure look like including decentralised supply units and active loads, and which control strategy would be required?
• In future should the distribution network be able to run independently (disconnected from the transmission network)?
• How do we control the balance between production and consumption in a future network supplied by sustainable energy sources with fluctuating production and consumption?

Studying Electrical Power Systems and High Voltage Engineering, you will be able to meet the challenges of the future smart and intelligent power system networks.

The purpose of this MSc study programme is to provide you with knowledge and skills in subject areas related to Electrical Power Systems and High Voltage Engineering using courses and project work. You will work with the following project themes:

1st semester: Dynamics in Electrical Energy Engineering.
3rd semester: Optimisation, Diagnosis and Control of Electrical Power Systems and High Voltage Systems.
4th semester: This semester is devoted to the Master’s thesis.

“I am studying Electrical Power Systems and High Voltage Engineering here at Aalborg University in Denmark.

Denmark is quite far ahead in research of new technologies which means that I have been able to gain an understanding of new technologies within my field. I have had the chance to work with these new technologies both theoretically and practically. In addition, I have been able to perform experimental work in the laboratories at Aalborg University, which are of high standards and very well equipped. Also, I like the fact that Aalborg University gives research a high priority as this means that I get to work with current subjects throughout my entire study.”

Václav Knap, Czech Republic
MSc student in Electrical Power Systems and High Voltage Engineering
Continuous depletion of fossil fuel reserves and environmental issues associated with the exploitation of these energy resources promotes the development of automotive, stationary, and consumer applications powered by fuel cells.

Fuel cells and hydrogen systems are important technologies which may contribute positively to the world energy situation. Fuel cells are already used commercially in a wide range of products, such as in power backup systems, fuel cell vehicles, and consumer electronics. Other applications will follow.

You will have the opportunity to work with technologies of fuel cell systems and hydrogen production and storage. Moreover, you will venture into a multidisciplinary field integrating general engineering disciplines, such as thermal systems, fluid dynamics, control engineering and electrical engineering.

The specialisation in Fuel Cells and Hydrogen Technology covers advanced aspects, including energy system modelling, heat and mass transfer, control engineering, and experimental work. This MSc specialisation also involves different hydrogen and fuel cell related components and energy system aspects. A new laboratory has been built, giving you the possibility of constructing and operating fuel cell-based technologies in real applications.

If you want to work with applications powered by fuel cells, you should consider choosing Fuel Cells and Hydrogen Technology where you will solve problems like:

- Should future vehicles be based on hydrogen propulsion systems?
- How can the most cost-effective, energy optimised hydrogen and fuel cell systems be developed?
- Can we replace our present oil supply infrastructure with a hydrogen supply infrastructure? And how? Could this be achieved?
- How can hydrogen and fuel cell systems be included in and help stabilise a future energy supply based on sustainable energy sources?
- Which types of fuel cells are the most suitable for given applications?

STUDENT PROJECTS

The purpose of this MSc study programme is to provide you with knowledge and skills in subject areas related to Fuel Cells and Hydrogen Technology using courses and project work. You will work with the following project themes:

1st semester: Thermo-mechanical Analysis Methods.
3rd semester: Optimisation, Diagnosis and Control of Fuel Cell and Hydrogen Technology Systems.
4th semester: This semester is devoted to the Master’s thesis.
AALBORG UNIVERSITY – EN.AAU.DK/EDUCATION

MECHATRONIC CONTROL ENGINEERING

If you want to work with multidisciplinary systems and problems, you should consider choosing this MSc specialisation where you will have the opportunity to solve problems like:

• How to design fully optimised products and systems?
• How to choose the best technological solutions, when combining different fields of engineering?
• How to model, analyse and design complex mechatronic systems?
• How to design advanced control systems for e.g. wind turbines and wave energy systems?
• What could be gained from using advanced control methods?

The specialisation in Mechatronic Control Engineering provides you with the opportunity not only to extend on your existing knowledge from the classic engineering disciplines, but also to develop a thorough understanding of the scientific principles and technologies involved. You will be introduced to modern and advanced control methods. You will learn to implement solutions in the laboratory, and you will learn to work with multi-disciplinary projects and communicate with team members from other disciplines.

STUDENT PROJECTS

The purpose of this MSc study programme is to provide you with knowledge in subject areas related to Mechatronic Control Engineering using courses and project work. You will work with the following project themes:

1st semester: Control of Hydraulic Actuated Mechanical System.
2nd semester: Advanced Control of Electrical Machines.
3rd semester: Optimisation, Diagnosis and Control in Mechatronic Systems.
4th semester: This semester is devoted to the Master’s thesis.

AALBORG

What is mechatronics? Most often people refer to mechatronics as the combination of mechanical and electrical elements to form a component or a system, but actually it is much more than that! Mechatronics as an engineering discipline is actually the synergic combination of mechanical, electronic, control and computer engineering to design fully optimised systems and components. A key factor in this respect is integration of the disciplines during the design process and the ability to select the best technological solution for a given problem!

As an example of a mechatronic product, think of a car engine. Previously, much of the functionality was placed in mechanics. Today’s functionality has shifted to microcontrollers controlling e.g. the fuel injection through small, electronically activated valves. Design of these new multi-disciplinary systems not only requires knowledge of proper mechanical design principles, but also electronics, embedded computer control hardware, software, sensors and control in order to design the optimal product.

The specialisation in Mechatronic Control Engineering is designed to give you a solid background for solving these multidisciplinary problems, combining different fields of engineering and enabling you as a design engineer to choose the optimal technology solutions for a given problem. Focus is on modelling, analysing, designing, and optimising mechatronic components and systems with emphasis on the core disciplines and with special focus on the control aspect.

STUDENT PROJECTS

The purpose of this MSc study programme is to provide you with knowledge in subject areas related to Mechatronic Control Engineering using courses and project work. You will work with the following project themes:

1st semester: Control of Hydraulic Actuated Mechanical System.
2nd semester: Advanced Control of Electrical Machines.
3rd semester: Optimisation, Diagnosis and Control in Mechatronic Systems.
4th semester: This semester is devoted to the Master’s thesis.

AALBORG UNIVERSITY – EN.AAU.DK/EDUCATION
Spurred on by technological progress and growing concerns about the efficient use of depleting energy resources, static power electronic converters employing advanced semi-conductor devices are currently used in an increasing number of applications. Such applications range from low power converters for milli-watt applications to converters for high-voltage DC transmission systems, handling hundreds of mega-watts. Other classical applications include adjustable-speed AC and DC drives for use in industry, switch-mode power supplies, audio amplifiers, uninterruptible power supplies, and welding machines.

In the last decade, power electronics and electrical drives have deeply penetrated the renewable energy sector. Today, power electronic converters provide vital functionality in a diversity of new technologies, including large wind turbine systems, fuel cells systems, and photo-voltaic power generation. Motor drives comprising power electronic converters and advanced electric machines play a key role in the transportation sector where new technologies are being applied in order to electrify many kinds of vehicle.

If you want to work with efficient, intelligent energy conversion employing power electronic technology and electrical machines, you should consider choosing this specialisation where you will have the opportunity to solve problems like:

- How do we ensure production using the lowest possible energy consumption?
- Should future electrical vehicles be driven by a permanent magnet motor or an induction motor?
- Which kind of generator provides the highest efficiency in a given application?
- How does the drive system in a production process influence the production quality?
- How do we produce an electric motor with a high efficiency, adapted to a production process?

The specialisation in Power Electronics and Drives allows you to combine state-of-the-art and conventional technologies, such as power semiconductor devices, electronics, electro-magnetics, electric motors and generators, digital signal processors, control theory, EMC, and energy technology. You will have access to a large, well-equipped laboratory offering you excellent opportunities for constructing and testing prototypes of electronic systems and electric machines.

STUDENT PROJECTS

The purpose of this MSc study programme is to provide you with knowledge in subject areas related to Power Electronics and Drives using courses and project work. You will work with the following project themes:

1st semester: Dynamics in Electrical Energy Engineering.
2nd semester: Control of Converter-fed AC Drives.
3rd semester: Optimisation, Diagnosis and Control of Power Electronic Drives or Converters.
4th semester: This semester is devoted to the Master’s thesis.
The incessant exhaustion of fossil fuel reserves and the environmental issues associated with the utilisation of these energy resources necessitate the development, not only of new conversion technologies, but also new, non-fossil fuels. These may e.g. be derived from biomass, waste, from by-products of different industrial processes, or from atmospheric sources, such as the sun, the wind, and the oceans.

The ability to design new, innovative energy technologies and systems will be decisive in the future where competition both in terms of efficiency and environmental issues will be fierce in order to meet market and society requirements.

If you want to work with effective, high impact methods for sustainable production of biofuel and biomaterials or development of energy efficient processes for production of electricity and heat, you should consider specialising in Thermal Energy and Process Engineering. Or maybe you want to develop effective methods for energy storage and energy utilisation in connection with transport of passengers and goods? Studying Thermal Energy and Process Engineering you have the opportunity to solve problems like:

- How can we develop energy efficient processes for production of heat and power?
- Can we develop energy harvesting systems using thermal and mechanical energy to run e.g. sensors and surveillance systems?
- Can we design small, efficient and silent vertical axis wind turbines for use in an urban environment?
- How do we develop efficient methods for energy storage applications for transport systems for humans and goods?

The specialisation in Thermal Energy and Process Engineering allows you to focus on thermal energy technologies and systems and advanced aspects of energy system modelling, heat and mass transfer, control engineering, and experimental work. You will learn to take a multi-disciplinary approach, working with the integration of general engineering disciplines such as thermal systems, fluid- and aerodynamics, control engineering, and electrical engineering.

The purpose of this MSc study programme is to provide you with knowledge in subject areas related to Thermal Energy and Process Engineering using courses and project work. You will work with the following project themes:

1st semester: Thermo-mechanical Analysis Methods.
3rd semester: Optimisation, Diagnosis and Control of Thermal Energy and Processing Systems.
4th semester: This semester is devoted to your Master’s thesis.

"One of the main reasons that I chose to study in Denmark concerns the fact that studies within the field of Energy Engineering are quite developed here. I chose Aalborg University because of the great facilities. There are great laboratories, group rooms, and the university even makes workshops for the students. Basically, there is everything you need when studying Energy Engineering.

Through the project work, I have gained great practical knowledge. We do the projects in groups, and this has taught me a lot about collaborating with others. For me as an engineer, it is really important that I can work in teams, which is why I am so happy that I have learned how to be part of a team and work together as a unity."

Leonardo Pelagotti, Italy
MSc student in Thermal Energy and Process Engineering
The wind industry is developing rapidly; many new technologies are being applied. New problems are being revealed due to the large penetration of wind power systems into the power supply network. Some of the new wind installations will be very large off-shore wind farms which should act as power plants and support the stability and power balance in the power supply network.

In future it may be expected that many small wind turbine generators will be installed, maybe as plug and play units at household level. These wind turbines may be either vertical or horizontal axis turbines. This will provide many new challenges for wind power engineers in future. The specialisation in Wind Power Systems addresses many topics related to this area.

If you want to work with topics such as generators, power electronics, control engineering, and power system technology related to wind power applications; you should consider choosing this MSc specialisation where you will have the opportunity to solve problems like:

• How do we ensure electric network stability when a large wind turbine is connected to the system?
• Should direct current (DC) or alternating current (AC) transmission be applied in offshore wind parks of the future?
• How can a wind turbine be protected against lightning?
• How do you design a micro electricity supply network comprising a wind turbine, energy storage and loads?

The purpose of this MSc study programme is to provide you with knowledge in subject areas related to Wind Power Systems using courses and project work. You will work with the following project themes:

1st semester: Dynamics in Electrical Energy Engineering.
2nd semester: Interaction between Generation and Load.
3rd semester: Optimisation, Diagnosis and Control of Electrical Conditions in Wind Turbines and Wind Farms.
4th semester: This semester is devoted to your Master’s thesis

“There is a very informal atmosphere at Aalborg University, which I have benefited a lot from. I feel very welcome, because people are so open, and I can speak with my professors as if I have known them for years. In that way, dialogue is encouraged, and you develop a more personal relationship with the professors. This is quite beneficial when you have questions or wish to take part in discussions. People are also generally good at speaking English, which means I have improved my English skills during this semester.

I would certainly recommend studying at Aalborg University, not only because of the friendly people and the informal atmosphere, but also because of the PBL method. By using the problem based learning method I have gained good cooperation skills, and I feel even more prepared for future jobs.”

Marcus Bauch, Germany
Guest student in Energy Engineering
The specialisation in Process Engineering and Combustion Technology focuses primarily on advanced skills in combustion technology, bioenergy systems, fluid mechanics, and flow systems, including Computational Fluid Dynamics (CFD) and multiphase flows. This MSc specialisation covers modelling, diagnostics, and control of energy systems.

This MSc specialisation is multidisciplinary and covers the integration of general engineering disciplines, such as process integration, fluid and combustion engineering as well as control and surveillance of thermal processes.

If you are interested in designing efficient combustion systems for advanced biofuels or optimising heat transfer surfaces and minimising operational problems, you should consider studying Process Engineering and Combustion Technology. This specialisation gives you the opportunity to solve problems like:

- How do we develop efficient and sustainable methods for production of biofuels and biomaterials?
- How do we design efficient combustion systems for advanced biofuels?
- How do we optimise heat transfer surfaces and minimise operational problems such as fouling?
- How do we design efficient flue gas cleaning systems for plants operating on complex fuels?

The purpose of this MSc study programme is to provide you with knowledge in subject areas related to Process Engineering and Combustion Technology using courses and project work. You will work with the following project themes:

1st semester: Combustion Technology.
2nd semester: Bioenergy Systems.
3rd semester: Control and/or Surveillance of Combustion Systems.
4th semester: This semester is devoted to the Master's thesis.
The oceans cover more than 70% of the surface of the Earth. They form the largest ‘solar panel’ and energy storage unit in the world and can provide unlimited energy to our society in the form of thermal energy, wind energy, tidal and wave energy. In addition to this, oil and gas deposits under the ocean beds are very important energy resources in the transition phase. However, it is a challenging task to extract, transport, and utilize these types of offshore energy in an efficient, reliable, and environmentally-friendly manner. For this reason, demands are increasing for new engineering skills e.g. for High Temperature and High Pressure (HTHP) exploration. Oil well exploration under harsh ocean conditions is a growing area of interest.

The specialisation in Offshore Energy Systems provides you with the opportunity to study various technologies for energy transfer, harvesting, and control of offshore energy systems. You will also acquire knowledge of how to design, analyse, and model mechanical systems, fluid power systems, and electrical systems with complex dynamics and elements.

If you want to work with these topics, you should consider choosing Offshore Energy Systems where you will have the opportunity to solve problems like:

- How do we analyse and design subsystems for offshore wind turbines?
- How do we model complex offshore energy systems?
- How do we develop advanced control algorithms for offshore energy systems?
- How do we implement extended safety and environmental technologies on the oil and gas platforms?
- How do we develop and design new systems for increasing robustness of equipment under harsh climate conditions?

Located at the largest Danish offshore hub, the city of Esbjerg, the specialisation in Offshore Energy Systems offers you many opportunities for close engagement and cooperation with different offshore energy companies during your study as well as good opportunities for employment afterwards.

STUDENT PROJECTS

The purpose of this MSc study programme is to provide you with knowledge in subject areas related to Offshore Energy Systems using courses and project work. You will work with the following project themes:

1st semester: Offshore Fluid Power and Mechanical Systems.
4th semester: This semester is devoted to the Master’s thesis.
The world needs energy engineers, and you will have a wide range of job opportunities. As an energy engineer, your future workplace can be any company that has to do with energy – whether it concerns planning, production, or the use of energy. You can work with all kinds of renewables within the electrical or thermal field, and you can work with optimisation of new energy apparatus and systems taking energy efficiency, cost, and performance into account. The workplace can be anywhere in the world, and many different industries and utilities employ energy engineers to ensure better products and better distribution of the energy with fewer losses. Your potential future job title could for instance be:

- Project engineer
- Research, development, or operation engineer
- Mechanical engineer
- Electrical engineer
- Thermal engineer
- Control engineer

Examples of where graduates in Energy Engineering work include:
- Vestas Wind Systems.
- Vattenfall
- Dong Energy
- Grundfos
- Danfoss
- Siemens Wind Power
MEET GRADUATES IN ENERGY ENGINEERING

"After I finished my Master’s degree I started as a Ph.D. student at the Department of Energy Technology where I am continuing my investigation of fuel cell systems fed by a methanol reformer. My former fellow students have found jobs in very different industries, i.e. as hydraulics modelling and control engineers and project engineers."

Kristian Kjær Justesen, Denmark
PhD student, MSc in Mechatronic Control Engineering

"I returned to Ghana, my home country, in mid-July, upon completion of my programme (MSc in Electrical Power System and High Voltage Engineering) at Aalborg University. In September 2006, I was appointed a part-time lecturer (Electrical Power Systems) in Accra Polytechnic. Concurrently, I worked as a Senior Electrical Engineer at Farnell Limited, in charge of power systems design and implementation. Under my charge, two major projects were executed for the Government of Ghana and Nestle Ghana Limited. It has really been worth studying at Aalborg University."

Ebenezer Afari Eklemet, Ghana
MSc in Electric Power Systems and High Voltage Engineering

"My current professional position is as a research engineer at Vestas Wind Systems in the “Vestas Global Research” department. My educational background is M.Sc. and PhD in Electrical Engineering, both from the Department of Energy Technology at Aalborg University.

In my daily work, I am a part of a team investigating new power conversion technologies for wind turbines. The investigations include evaluation of system efficiency, system reliability, system costs and system complexity. Such investigations require a detailed system insight and system understanding – an understanding that comes from both years of experience and from an educational background where focus has been on the system perspective."

Lars Helle, Denmark
MSc and PhD in Engineering in Electrical Engineering, Research Engineer at Vestas Wind Systems

"When I finished my Master’s thesis, I felt well prepared to enter the business world. When I look back at the strengths that I obtained during my education, I’m using many of them today: The ability to work and cooperate in a group and take initiative, present results and share knowledge, and last but not least wanting to learn more and seek new knowledge. In short, I think my master’s degree gave me a very solid background which is the building block for my further professional career."

Rasmus Møller Bering, Denmark
MSc in Thermal Energy and Process Engineering, Engineer, Hydrodynamics analysis & CFD, MAN Diesel & Turbo
PROBLEM BASED LEARNING

As a student at Aalborg University, you will work closely together with your fellow students by way of problem based project work.

Aalborg University is host to a successful UNESCO Chair in Problem Based Learning in Engineering Education and a Centre for PBL and Sustainability approved by UNESCO. The Aalborg Centre for Problem Based Learning in Engineering Science and Sustainability under the auspices of UNESCO will build upon and develop the work of the UNESCO Chair and Centre for PBL and Sustainability, and is keenly supported by Aalborg University and the Danish Ministry of Science, Innovation and Higher Education.

When writing your problem based project, you will typically be part of a group consisting of 4-5 students. Once you have formed a project group, you need to define a problem together that you want to examine. The problem forms the basis of your project, and you are to a great extent responsible for defining it yourselves within an often very broad theme frame. The group work ensures a great variety of approaches and perspectives, which results in a sound and thoroughly prepared project. Together, you are able to discuss the details thoroughly. At the same time, you are able to solve larger and more complex problems than if you were studying on an individual basis.

Each of you has the opportunity to shape the project because group work requires a contribution from everyone. If you have any academic questions, you may also discuss these with your friends in the group. The project work is completed with an exam. While working on your project, you will also need to do individual exams in your subjects.

Together with lectures, literature and cooperation with the corporate sector, the project work will help you gain a deeper insight into the subject you are examining than if you had been working on your own.

With group work, you will quickly realise that you might have different opinions about how to solve a problem. Group work means that you have to compromise, and you will learn a lot about how to cooperate. Group work is very popular in the modern labour market so both you and your future workplace will benefit from the skills in cooperation you have acquired at Aalborg University.

"My study in Denmark is exciting and challenging. Besides regular courses each semester, the students have a semester project to do. This is quite unique compared to other universities in Denmark and other countries. It helps me a lot in order to utilise theoretical knowledge in practice. During each project we have one or two supervisors. They provide useful suggestions and help us with possible issues. During the first semester, I was in a group of five students who came from three different countries. I was amazed by seeing how much creativity this resulted in in the group. During the project, we were learning from each other, doing the hard work together, discussing and talking to each other.”

Zheyuan Hu, China
MSc student in Wind Power Systems

RATED FOR EXCELLENCE

Aalborg University is rated for excellence in the QS-ranking system. Aalborg University has received five stars certifying the world-class position of the university based on cutting-edge facilities and internationally renowned research and teaching faculty.

Within Engineering and Technology, Aalborg University ranks as number 79 in the world in 2014.
Aalborg is Denmark’s fourth largest city and has approximately 125,000 inhabitants. About 10% of these are students. As a student at Aalborg University, you can enjoy Aalborg’s many opportunities with regard to cultural experiences, sports, and spare time activities. In recent years, Aalborg has undergone a transformation from an industrial city to a city of knowledge and culture. The city’s development is particularly apparent at the harbour promenade where a lively urban and cultural life with cafes, cultural event venues, and sports facilities has replaced factories and smoking chimneys. As an international student at AAU, your chances of finding accommodation in Aalborg are also great.

ACCOMMODATION IN AALBORG

As an international student in Aalborg, you are guaranteed accommodation. Aalborg University’s International Accommodation Office (IAO) will assist you in finding a place to live. The types of accommodation offered to you by AAU’s International Accommodation Office include a single room in a private house, a room in a hall of residence rooms or a large flat shared with other students. The rent and location vary according to the type of housing.
Situated by the sea, Esbjerg is a town with more than 70,000 inhabitants characterised by wind energy, the oil industry, and shipping. As a student at Aalborg University’s campus in Esbjerg, AAU-Esbjerg, you can enjoy the city’s many opportunities with regard to cultural experiences, sports, and spare time activities. Aalborg University Esbjerg is located only around 3 kilometres from Esbjerg town centre and transport options, such as bus or bike, are great between the town centre and campus. Therefore, you have easy access to the many cultural experiences and spare time activities that Esbjerg is able to offer.

ACCOMMODATION IN ESBJERG

As an international student at Aalborg University in Esbjerg, you are guaranteed accommodation, and the price level is lower than in most other university cities in Denmark. In recent years, we have succeeded in providing accommodation for all international students and this, we continue to strive for.
APPLICATION AND REQUIREMENTS

Admission to the BSc Energy guest programme presupposes 1st to 4th semesters of a BSc degree in Electrical or Mechanical Engineering or similar.

Admission to the MSc programme in Energy Engineering presupposes a BSc degree in electrical energy, thermal energy, or mechatronic control engineering or similar. Admission to the MSc programme in Sustainable Energy Engineering presupposes a BSc degree in thermal processes engineering or dynamic systems engineering or similar.

In order to apply you must document basic written and spoken English. The official language requirements for international students applying to Aalborg University are:

- IELTS (academic test): 6.5 or www.ielts.org
- TOEFL (paper-based): 560 or www.ets.org/toefl
- TOEFL (internet-based): 88 or www.ets.org/toefl
- Cambridge Certificate of Proficiency (CPE) www.cambridgeenglish.org
- Certificate in Advanced English (CAE) www.cambridgeenglish.org
- Cambridge First Certificate with the grade B www.cambridgeenglish.org

The test must be less than two years old to be accepted.

For more information, please refer to: apply.aau.dk

TUITION-FREE STUDIES

Students from EU/EEA countries are not required to pay a tuition fee. However, all students must pay all other costs related to studying in Denmark: for example costs related to books, living expenses, and accommodation. With the exception of students from partner universities outside the EU/EEA, an international student from a non-EU/EEA country will need to pay a tuition fee.

DEADLINES

Application deadline for guest students in the Bachelor’s programme:

1 March when applying for the September intake
1 October when applying for the February intake

Application deadline for Master’s programmes:

1 March (commencement of study: 1 September)
CONTACT INFORMATION
If you have questions about how to apply or general questions about studying in Denmark and life at Aalborg University, please contact:

STUDENT GUIDANCE
If you have questions regarding the study programme, please send an e-mail to energy.sg@ses.aau.dk

INTERNATIONAL OFFICE IN AALBORG
Aalborg University
Fredrik Bajers Vej 5
DK-9220 Aalborg East
Denmark
Phone: (+45) 9940 9940
E-mail: incoming-student@adm.aau.dk

INTERNATIONAL OFFICE IN ESBJERG
Aalborg University Esbjerg
Niels Bohrs Vej 8
DK-6700 Esbjerg
Denmark
E-mail: international@esbjerg.aau.dk

EN.AAU.DK/EDUCATION